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Abstract—Smart grid has evolved as the next generation
power grid paradigm which enables the transfer of real time
information between the utility company and the consumer via
smart meter and advanced metering infrastructure (AMI). These
information facilitate many services for both, such as automatic
meter reading, demand side management, and time-of-use (TOU)
pricing. However, there have been growing security and privacy
concerns over smart grid systems, which are built with both smart
and legacy information and operational technologies. Intrusion
detection is a critical security service for smart grid systems,
alerting the system operator for the presence of ongoing attacks.
Hence, there has been lots of research conducted on intrusion
detection in the past, especially anomaly-based intrusion de-
tection. Problems emerge when common approaches of pattern
recognition are used for imbalanced data which represent much
more data instances belonging to normal behaviors than to attack
ones, and these approaches cause low detection rates for minority
classes. In this paper, we study various machine learning models
to overcome this drawback by using CIC-IDS2018 dataset [1].

Index Terms—smart grid, security, intrusion detection, imbal-
anced data, machine learning

I. INTRODUCTION

The smart grid improves the efficiency, reliability and
economics of current energy systems through the integrated
use of both information technology (IT) systems used for
data-centric computing and operational technology (OT) sys-
tems used to monitor events, processes and devices. Using
the two-way flow of electricity and information, the smart
grid builds an automated highly distributed energy delivery
network, which supports real-time data exchange with the
aim to balance supply and demand. The main services the
smart grid provides include: automatic meter reading, power
grid monitoring, demand side management, home networking
between electrical devices for energy management.

However, there have been growing concerns over the se-
curity and privacy issues in smart grid systems, due partly
to integrated communication networks among many devices
based on both IT and OT systems. This network convergence
creates a new domain of security and privacy issues ranging
from catastrophic attacks to plenty of explanatory information

available to an adversary, such as leakage of social security
number, home address, lifestyle in terms of knowing when
a customer is at home versus away from home, stealing of
power, and attacks to disrupt network operations [2], [3].
Furthermore, because of strict latency requirements and the
critical nature of power systems, the smart grid is also very
susceptible to denial of service (DoS) attacks for which
blackouts can happen.

Intrusion detection is a critical security service to protect
smart grid systems, alerting the system operator for the pres-
ence of ongoing attacks. Hence, there has been lots of research
conducted on intrusion detection, especially anomaly-based
intrusion detection, to address security concerns in smart grids.
However, some of those prior research is based on imbalanced
data, which have much more data instances belonging to
normal behaviors than to attack ones, and problems emerge
when common approaches of pattern recognition are used for
those imbalanced data; these approaches cause low detection
rates for minority classes. In this paper, we investigate various
machine learning models to overcome this drawback by using
CIC-IDS2018 dataset [1].

II. BACKGROUND AND RELATED WORK

A. Attack Scenarios

There could be lots of different types of attacks possible
in smart grid systems. In order to better understand common
situations and our proposed approach, let us first walk through
some of attack examples in smart grids in detail.

Attack Scenario 1: A remote attacker exploits cross-site
scripting (XSS) and SQL injection vulnerabilities to gain
access to the vendor specific server and performs remote
code execution on smart meters. In addition, once the attacker
has access to the smart meter collector, he could launch the
OpenSSL-based heartbleed to gain access to the smart grid
server from which he targets the billing engine server.

Attack Scenario 2: A distributed DoS (DDoS) attack can
deplete the computational resources of the target and cause
serious delay or even failure in the data transmission or power
service in smart grids. Hence, the impact of DDoS attacks
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is the loss of availability of the smart grid. Unlike a DoS
attack where the attacker makes the target unavailable to its
legitimate users, a DDoS attack is a coordinated DoS attack
where the attacker exploits multiple compromised systems
such as botnets, to cause greater damage to the smart grid.

Attack Scenario 3: Malicious devices may be inadvertently
infiltrated inside the trusted perimeter by personnel. For ex-
ample, USB memory sticks have become a popular tool to
circumvent perimeter defenses: if a few compromised USB
sticks are plugged into previously secure devices inside the
trusted perimeter, malware on the USB stick can immediately
infect the devices.

Attack Scenario 4: A malicious user can access or change
data in transit if a transmission application protocol for the data
such as hypertext transfer protocol (HTTP) and file transfer
protocol (FTP) is not protected. There are several approaches
to transmission security: HTTPS using SSL (Secure Socket
Layer) and TCP connections tunneling using well known SSH
protocol. In supervisory control and data acquisition (SCADA)
systems, to transfer files between host and remote sites for data
logging, reporting or configuration, FTP is used.

All the above mentioned attacks are based on both IT and
OT systems of the smart grid, and the CIC-IDS2018 dataset
that we used for our research contains a handsome number of
observations of those attacks.

B. Dataset for Intrusion Detection Research

Any mission critical or safety critical system connected to
the Internet should have a strong security measure, especially
a strong intrusion detection service, to protect itself from
catastrophic failures, and smart grid systems are no exception.
Machine learning has been playing a critical role in designing
classification algorithms for intrusion detection systems, and
KDD99 [14] has been the most widely used dataset for eval-
uating those algorithms. However, there are many problems
associated with the KDD99 dataset. Two major problems are
listed below:

• It is heavily imbalanced. Approximately 80% of data
flow is attack traffic (3925650 attack instances in total
4898430 instances). Generally, a typical network contains
approximately 99.99% of normal instances.

• Duplicate records in both training and testing datasets
bias results for frequent DOS attacks and normal in-
stances.

Duplicate and redundant records were removed from the
KDD99 dataset and new dataset was named as NSL-
KDD [15]. Since it is a re-sampled version of KDD99, some
deficiencies still remain in NSL-KDD.

Canadian Institute of Cybersecurity (CIC) released a dataset
called CIC-IDS2018 for intrusion detection research in 2018.
The attacking infrastructure to create the dataset includes 50
machines and the victim organization has 5 departments with
420 machines including 30 servers. The dataset includes the
captured network traffic and system logs of each machine,
along with 81 features extracted from the captured traffic. The
dataset includes 14 different attacks shown in Figure 1.

Fig. 1. Attacks in CIC-IDS2018

A lot of attacks listed in Figure 1 have been observed in
smart grid systems, as detailed in the previous section, and
this is one of the reasons why we chose the dataset for our
research.

C. Prior Intrusion Detection Research in Smart Grid

In general, networking devices in the smart grid have limited
computation capabilities thus being very unlikely to have
comprehensive security measures. Hence, utility companies
need to calculate the risks of deployment and the necessity
for intrusion detection before they choose systems that they
want to monitor [6]. At the same time, intrusion detection
algorithms are required to provide a precise decision on cyber
attacks with minimal computational complexity.

Various intrusion detection approaches using machine learn-
ing were studied and evaluated based on KDD99 dataset
in [7]. It was found that a higher degree of accuracy could be
achieved by using those machine learning models. However,
there were also some weaknesses that could result in misclassi-
fication of normal network data. Another research on intrusion
detection was conducted for advanced metering infrastructure
in [8]. The proposed state-based approach calculated security
metrics using a sequence of events in the attack to achieve
a high degree of confidence to develop intrusion detection
for AMI. Similary, a two-tier intrusion detection framework
was explored in [9] for AMI, and the approach proposed
in citeb10 leveraged the concept of intrusion tolerance and
was specifically designed to improve the availability of smart
grid. Lastly, Yong Wang et al proposed an intrusion detection
approach for SCADA systems to identify false data injection
attacks [11].

Since the smart grid systems aim to provide resiliency
against DDoS attacks, power outage and hardware/software
failures, it is worthwhile to discuss some of the prior research
focusing on the aspect. Leon Wu et al. proposed a reliability
framework for the smart grid system, which evaluates the
reliability of several stages and also provides necessary feed-
back for the betterment of the network safety in [12]. On the
other hand, a probability-based model to analyze the result
of intrusion detection and response on the reliability of the
cyber-physical system was discussed in [13].

III. OUR APPROACH

A. Intrusion Detection Classifiers Used

We have used four machine learning classifiers for our study,
as follows:
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a) Random Forest: Random Forest is a supervised learn-
ing algorithm. It consists of a collection or ensemble of simple
tree predictors, each capable of producing a response when
presented with a set of predictor values. For classification
problems, this response takes the form of a class membership,
which classifies a set of independent predictor values with
one of the categories present in the dependent variable. This
classifier organized a series of test questions and conditions in
a tree structure. Once the tree has been constructed, classifying
a test record is straightforward. Starting from the root node,
apply the test condition to the record and follow the appropri-
ate branch based on the outcome of the test. It then leads us
either to another internal node, for which a new test condition
is applied or to a leaf node. When the leaf node is reached,
the class label associated with the leaf node is then assigned
to the record it traces the path in the decision tree to predict
the class label of the test record and the path terminates at a
leaf node.

b) Naive Bayes: Naive Bayes is a simple probabilistic
classifier that assumes the presence of a particular feature
of a class which is unrelated to any other features. This
means that the probability of one attribute does not affect the
probability of the other. An advantage of Naive Bayes is that
it only requires a small amount of training data to estimate the
parameters (means and variances of the variables) necessary
for classification. Because independent variables are assumed,
only the variances of the variables for each class need to be
determined and not the entire covariance matrix.

c) Extreme Gradient Boosting: XGBoost was mainly
designed for speed and performance using gradient-boosted
decision trees. XGBoost helps in exploiting every bit of
memory and hardware resources for tree boosting algorithms.
The algorithm is highly effective in reducing the computing
time and provides optimal use of memory resources. XGBoost
can perform the three major gradient boosting techniques, that
is Gradient Boosting, Regularized Boosting and Stochastic
Boosting. Boosting is a machine-learning algorithm and can
be used to reduce bias and variance from the dataset. Boosting
helps to convert weak learners to strong ones. A weak-learner
classifier is weakly correlated with the true classification,
whereas strong learners are strongly correlated. The main
variation between various boosting algorithms is the method
of weighting the training data and its hypothesis.

d) Support Vector Machine: Support vector machines
(SVMs) are supervised learning models with associated learn-
ing algorithms that analyze data and recognize patterns used
for classification and regression analysis. Given a set of
training examples, each marked as belonging to one of two
categories, an SVM training algorithm builds a model that
assigns new examples into one category or the other, making
it a non-probabilistic binary linear classifier. An SVM model
is a representation of the examples as points in space, mapped
so that the examples of the separate categories are divided
by a clear gap that is as wide as possible. New examples are
then mapped into that same space and predicted to belong to
a category based on which side of the gap they fall on.

B. Data Preprocessing

Most real-world classification problems display some level
of class imbalance, which is when each class does not make up
an equal portion of the dataset. The data imbalance problem
is recognized as one of the major problems in the field of
data mining and machine learning as most machine learning
algorithms assume that data is equally distributed. In the case
of imbalanced data, majority classes dominate over minority
classes, causing the machine learning classifiers to be more
biased towards majority classes. This causes poor classification
of minority classes. Classifiers may even predict all the test
data as majority classes.

To overcome these challenges, several approaches have been
developed that can be implemented during the pre-processing
stage. One commonly used strategy is called resampling,
which includes undersampling and oversampling techniques.
If one balances the dataset by removing the instance from
the overrepresented class then its called undersampling. Over-
sampling can be achieved by adding similar instances of
underrepresented class to balance the skewed class ratio.

CIC-IDS2018 contains 15 different classes, 14 of them are
attack types and one of them is benign. Out of a total of
16,233,002 (approx. 16 millions) observations we randomly
selected 1,298,644 (approx. 8% of original dataset) observa-
tions while keeping the same proportionality of various attack
types from the original dataset. A half of them ( 649,322) was
kept aside as a testing set. From the remaining half we created
a training set with 123,548 number of observations. The reason
behind to shrink the training set is to balance the skewed class
ratio. Following are the steps involved to generate the training
set:

• Out of fifteen classes the following four classes have a
very low number of observations:

– Brute Force Web (611)
– Brute Force XSS (230)
– DDOS Attack LOIC UDP (1730)
– SQL Injection (87)

• The minimum number of observations in the rest of the
eleven classes is 10,903

• We apply combination of undersampling and oversam-
pling in our training set.

– As we have lots of observations of those eleven ma-
jority attack types we decided to use undersampling
for those attack types.

– For four minority classes we applied Synthetic Mi-
nority Over-sampling Technique (SMOTE) to make
a balance dataset with the undersampled majority
attack types.

1) Synthetic Minority Over-sampling Technique (SMOTE):
Over-sampling by replication can lead to more specific regions
in the feature space as the decision region for the minority
class. This can potentially lead to overfitting on the multiple
copies of minority class examples. To overcome the overfitting
and broaden the decision region of the minority intrusion class
cases, SMOTE can be used to generate synthetic examples
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Fig. 2. Training(left) and testing(right) set freq

by operating in feature space rather than in data space. The
minority class is oversampled by taking each minority class
sample and introducing synthetic examples along the line
segments joining any of the k minority class nearest neigh-
bors. Depending upon the amount of over-sampling required,
neighbors from the k nearest neighbors are randomly chosen.
Synthetic samples are generated in the following way: take
the difference between the sample under consideration and
its nearest neighbor, multiply this difference by a random
number between 0 and 1, and add it to the feature vector
under consideration. This causes the selection of a random
point along the line segment between two specific features.
This approach effectively forces the decision region of the
minority class to become more general.

The synthetic examples cause the classifier to create larger
and less specific decision regions, rather than smaller and
more specific regions, as typically caused by over-sampling
with replication. More general regions are now learned for the
minority class rather than being subsumed by the majority
class samples around them. The effect is that classifiers
generalize better. This generalization capacity of a classifier
can be very pertinent for intrusion detection. Figure 2 shows
the frequency of training and testing set respectively.

C. Feature Selection

High dimensional data, in terms of a number of features, is
common in smart grid networks. To extract useful information
from these high volumes of data, we have to use statistical
techniques to reduce the noise or redundant data. This is
because we do not need to use every feature at our disposal
to train a model. We can improve our model by feeding in
only those features that are uncorrelated and non-redundant.
This is where feature selection plays an important role. Not
only it helps in training our model faster but also reduces
the complexity of the model, makes it easier to interpret and
improves the accuracy, precision and recall. We applied two
feature selection algorithm (i) Boruta Feature Selection and (ii)
Recursive Feature Elimination algorithms over CIC-IDS2018
dataset which are described below.

1) Boruta Feature Selection: The Boruta algorithm is a
wrapper built around the random forest classification algo-
rithm. It tries to capture all the important, interesting features
in the dataset with respect to an outcome variable. It duplicates
the dataset and shuffle the values in each column. These values
are called shadow features. Then it trains a classifier, such as
Random Forest Classifier on the dataset. By doing this we
ensure that we have an idea of the importance for each of the
features of our dataset. Then, the algorithm checks for each
of our real features if they have higher importance. That is,
whether the feature has a higher Z-score than the maximum
Z-score of its shadow features. If they do, it records this in a
vector and will continue with another iteration. In essence, the
algorithm is trying to validate the importance of the feature
by comparing with random shuffled copies which increases the
robustness. Boruta can be very useful when we do not have
any idea of the optimal number of features or we suppose
that there are some features which are not contributing at all.
Boruta discards fields which are not useful at all for the model.
Therefore, we are removing features without subtracting from
the model performance.

CIC-IDS2018 have total 81 features and after applying the
Boruta feature selection algorithm on our training set we have
71 important features out of it. Since we still had a good
number of features to work on, we decided to try one more
feature selection algorithm on our training dataset.

Fig. 3. Selected Features from CIC-IDS2018

2) Recursive Feature Elimination (RFE): RFE is basically
a backward selection of predictors. This technique begins by
building a model on the entire set of predictors and computing
an importance score for each predictor. The least important
predictor are then removed, and the model is rebuilt and
importance scores are computed again. The subset size that
optimizes the performance criteria is used to select predictors
based on the importance rankings. The optimal subset is then
used to train the final model.

Not all models can be paired with the RFE method and some
models benefit more from RFE than others. Because RFE
requires that the initial model uses the full predictor set, some
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models cannot be used when the number of predictors exceeds
the number of samples. Backwards selection is frequently used
with random forest and naive bayes models. We applied both
of these models with RFE, random forest output with 26
most important features and naive bayes select 31 features
as important. 26 features selected by random forest are also
in common with naive bayes. We finalized these 26 features
to work with different machine learning classifiers. The 26
features selected are shown in Figure 3.

Fig. 4. Precision, recall and F1 score of Random Forest

Fig. 5. Precision, recall and F1 score of Naive Bayes

IV. PERFORMANCE ANALYSIS

A. Performance Metrics
Accuracy alone is not a good evaluation option when

working with an imbalanced dataset. As mentioned earlier,

Fig. 6. Precision, recall and F1 score of SVM

Fig. 7. Precision, recall and F1 score of XGBoost

Fig. 8. Mean precision, recall and F1 score

Fig. 9. Accuracy of machine learning models
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dealing with a highly imbalanced dataset is one of the biggest
challenges in IDS. An imbalance occurs when one or more
classes have very low proportions in the data compared to the
other classes. Most of the classification algorithms do not work
well for such problems since the classifiers tend to be biased
towards the majority class and hence perform poorly on the
minority class. As a result, the high accuracy obtained from
these classifiers is largely dominated by the majority classes.
Hence, in addition to accuracy, we used the following metrics
to evaluate our models:

a) Confusion Matrix: A clean and unambiguous way
to present the prediction results of a classifier is to use a
confusion matrix. This is a useful table that presents both the
class distribution in the data and the classifiers predicted class
distribution with a breakdown of error types.

b) Precision: Precision is the number of true positives
divided by the sum of true positives and false positives. Put
another way, it is the number of positive predictions divided by
the total number of positive class values predicted. Precision
can be thought of as a measure of a classifiers exactness. A low
precision can also indicate a large number of false positives.

c) Recall: Recall is the number of true positives divided
by the sum of true positives and false negatives. Put another
way it is the number of positive predictions divided by the
number of positive class values in the test data. Recall can be
thought of as a measure of a classifiers completeness. A low
recall indicates many false negatives.

d) F1 Score:: The F1 Score is the harmonic mean of
precision and recall. Put another way, the F1 score conveys
the balance between the precision and recall. If we want to
create a balanced classification model with the optimal balance
of recall and precision, then we try to maximize the F1 score.

B. Results

This study aimed at developing an efficient intrusion detec-
tion method with low false negative rates. For this purpose,
Boruta Feature Selection and Recursive Feature Elimination
was performed to determine a subset of the original features in
order to eliminate the irrelevant features as well as to improve
the classification efficiency. In classification step, Random For-
est (RF), Naive Bayes (NB), Support Vector Machine (SVM)
and Extreme Gradient Boosting (XGBoost) were trained and
tested based on CIC-IDS2018 dataset. Out of these four
classifiers, Extreme Gradient Boosting and Random Forest
performed better with respect to precision, recall and F1 score.
The main objective of this experiment is to acquire overall
better classification model in terms of low false negative rates.
The XGBoost and RF classifier achieved recall 99.87% and
99.75% respectively. These experiments were performed by R
version 3.5.3 on desktop PC with 3.6 GHz Intel Core i7-4790
processor and 16GB RAM.

V. CONCLUSION

Though the classifiers used in this study have exhibited
satisfactory performance there is still much room for im-
proving their performance. The current classifier models will

be improved through the inclusion of network packets and
attacks that are unique to the smart grid. The parameters of
the classifier models will be re-evaluated for a better training
of the newly constructed data. It is also possible that some
other classifiers may be able to achieve better performance.
Thus, our immediate future work will focus on evaluating the
effectiveness of some existing classifiers for our problem. In
this way, for each attack type the most effective classifier can
be determined.
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